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Abstract 

This report describes a Technology Integration Experiment (TIE) 
between the University of Maryland and MITRE Corp. which was 
undertaken as part of the (D)Arpa/Rome Laboratory Planning Ini- 
tiative (ARPI). This work led to an integration of the UM Parka-DB 
tool into the MITRE ForMAT transportation planning tool. This 
work also forms one of the cornerstones of the "Case-based Planning" 
cluster of the current phase of the ARPI. 

1    Planning Background 

In case-based planning (CBP), previously generated plans are stored as cases 
in memory and can be reused to solve similar planning problems in the future. 
CBP can save considerable time over planning from scratch (generative plan- 
ning), thus offering a potential (heuristic) mechanism for handling intractable 
problems. With our system, CaPER, we are currently developing new ap- 
proaches to CBP. In particular, one drawback of CBP systems has been the 
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need for a highly structured memory that requires significant domain engi- 
neering and complex memory preindexing schemes to enable efficient case 
retrieval 

In contrast, the CaPER CBP system uses the Parka high performance 
knowledge representation system [9] to retrieve plans quickly from a large 
memory that is not preindexed. Thus, it is relatively inexpensive to access 
memory frequently, and memory can be probed flexibly at case retrieval time. 
CaPER can issue a variety of queries that result in the retrieval of one or more 
plans (or parts of plans) that can be combined to solved the target planning 
problem. These plans can be merged and harmful interactions among them 
resolved using annotations on a plan to capture interdependencies among its 
actions [8, 7, 5, 9]. 

1.1    Transportation Logistics Planning 

The United States Transportation Command (USTRANSCOM) is responsi- 
ble for generating and maintaining the plans by which United States military 
forces are deployed. This responsibility includes determining the transporta- 
tion needs for missions short and long, small and very large. For large mis- 
sions, the process by which these transportation plans are constructed can be 
very complex and time consuming. Representatives from the various services 
and commands involved in a plan must collectively decide how best to allo- 
cate the limited transportation resources (aircraft, ships, trucks and trains) 
to achieve the many military goals of the mission. The end result of this pro- 
cess is an Operational Plan (OPLAN) which specifies where and when the 
forces involved in a mission are to be moved. Associated with a OPLAN are 
one or more Time Phased Force Deployment Data (TPFDD) which describe 
what, when, and how the forces for a mission will be deployed. The OPLAN 
and TPFDDs are stored and maintained until their execution is called for. 
At that time, the plan will generally have to be modified to fit the particular 
details of the current situation. 

ForMAT (Force Management and Analysis Tool) provides an environment 
in which a force development and planning specialist can view, modify, and 
create the basic structures of TPFDDs (called force modules, or FMs). FMs 
prescribe a force or set of forces that can be used to satisfy some planning 
requirement. The FM is typically a grouping of combat, combat support, and 
combat service support forces, and ranges in size from the smallest combat 



element to the largest combat group. It may specify accompanying supplies 
and the required movements, resupply, and personnel necessary to sustain 
forces for a minimum of 30 days. The elements of a FM are linked together 
so that they may be extracted from, or adjusted as, an entity to enhance the 
flexibility and usefulness of a plan. One or more FMs for use in a given plan 
are stored in a TPFDD. In theory, FMs form a library which can be drawn 
upon to quickly build a new plan. In a crisis, new TPFDDs will be built, at 
least in part, from FMs within one or more existing TPFDDs. 

The force modules that compose TPFDDs are themselves composed of 
smaller units called Unit Line Numbers (ULNs). A ULN identifies a force, 
support for a force, or a portion of a force. A ULN is often described by its 
Unit Type Code, which can span a wide range of items from tactical fighter 
squadrons and army battalions to dog teams, or even a Catholic chaplain. 
Finding appropriate ULNs (and therefore FMs) in previous TPFDDs is a 
complex task, similar to case-retrieval in case-based planning. 

2    High Performance Support for ForMAT 

The integration of ForMAT and the University of Maryland system began 
from a Technology Integration Experiment (TIE) which examined whether 
the "structure matching" system developed for supporting the case-based 
reasoning in CaPER could also handle retrieval in ForMAT. Before we de- 
scribe this integration, we review the approach to structure matching in 
CaPER and the parallel versions of the algorithms that provided the original 
speedup needed to support a knowledge base as large as ForMAT required. 
(Note that we eventually were able to support ForMAT on a single processor 
using a data-based version of Parka. This work is described in Section 3.) 

2.1    Representing structures for matching 

Our description of the problem of structure matching follows that given in 
[11]. A knowledge base defines a set, P, of unary and binary predicates. 
Unary predicates have the form Pi(x) and binary predicates have the form 
Pj(x-i,x2), where each X{ is a variable on the set of frames in the KB. An 
existential conjunctive expression on these predicates is a formula of the 
form 3zi,..., xm : Pi A P2A,..., APn, where n > 1.  Our task is to retrieve 



all structures from memory which match a given conjunctive expression. 
Therefore, we would like to find all such satisfying assignments for the X{. 

We can view the problem of matching knowledge structures in two ways. 
The first is as a subgraph isomorphism problem *. We view variables as 
nodes and binary predicates as edges in a graph. We want to find structures 
in memory which "line up" with the graph structure of the query expression. 
The other way to view the matching problem is as a problem of unification 
or constraint satisfaction. If we can find a structure in memory which pro- 
vides a consistent assignment to the variables Xi (i.e., unification), then that 
structure matches the conjunctive expression. 

2.1.1    Overview of the algorithm 

The structure matching algorithm operates by comparing a retrieval probe, 
P, against a knowledge base (KB) to find all structures in the KB which are 
consistent with P. This match process occurs in parallel across the entire 
knowledge base. A Parka KB consists of a set of frames and a set of relations 
(defined by predicates) on those frames. Most relations are only implicitly 
specified and so must be made explicit by expanding the relation with the 
appropriate inference method. By computing inherited values for a relation, 
all pairs defining the relation are made explicit. We currently allow only 
unary and binary relations. 

A retrieval probe is specified as a graph consisting of a set of variables 
V(P) and a set of predicates (or constraints) C(P) that must simultaneously 
hold on frames bound to those variables. The result of the algorithm is a set 
of ^-tuples, where each &-tuple encodes a unique 1 — 1 mapping of frames 
to variables in V(P), that unifies with the description of the structure in 
memory with C(P). The set of frames that can bind to each variable is 
initially restricted by a set of constraints indicated by unary predicates. Each 
unary constraint may only constrain the values of one variable. Examples of 
these constraints are "X is a dog" or "the color of X is yellow". We allow 
set theoretic combinations of the unary constraints, for example UX is a dog 
and the color of X is yellow", or UX is a dog but X is not yellow"2 The 

1More specifically, this is a problem of Directed Acyclic Graph (DAG) isomorphism 
with typed edges, the edges being the relations in the KB between frames. 

2Variables in the query probe which do not appear in a unary constraint are treated 
differently. Variables not contained in a unary constraint are still able to be constrained by 



domains for each variable are maintained throughout the match process and 
are further restricted as more constraints are processed. 

Constraints between frames bound to variables are specified by a set of 
binary constraints. For example, we can say "the color of X must be Yn, 
or "X is a part of F", for some X and Y in V(P). Binary constraints are 
processed by "expanding" the binary relation given in the constraint. By 
expansion we mean that all pairs participating in a relation R in the KB are 
made explicit by invoking the inference method for the associated predicate. 
The pairs allowed to participate in the expanded relation are restricted to 
those in the domains of the variables related by R. For example, a binary 
constraint may be expressed as (Color X Y). In this case the values for 
each concept in the domain of X are computed for the color predicate and 
pairs that have values outside the domain of Y are excluded. Two additional 
binary predicates, "eq" and "neq" are provided to provide codesignation and 
non-codesignation of variables. These constraints act as a filter, eliminating 
any tuples from the result for which the constrained variables are(not) bound 
to the same frame. 

The result of a structure match is a set of fc-tuples, where each tuple 
corresponds to a satisfying assignment of the k variables. Alternatively, the 
result can be viewed as a relation. Initially, the matcher begins with an 
empty set of relations. During the match, several intermediate relations may 
be constructed. Simple binary relations result from the expansion of a binary 
constraint. These are later fused (via a relational join operation) or filtered 
(via codesignation or non-codesignation) until a single relation remains. The 
algorithm selects binary constraints to process using a greedy algorithm based 
on a simple cost model stored in the metadata. 

2.1.2    Testing Structure Matching Queries 

At the time of the first experiments between CaPER and ForMAT, we had 
just completed a migration from a CM-2 SIMD implementation of Parka to a 
MIMD implementation running on a number of supercomputers including an 
IBM SP2, a CRAY T3D and several other machines. One domain for testing 
the MIMD implementation was on knowledge bases that were created as 
part of doctoral thesis work on the CAPER system itself [8, 7]. Part of this 

intersecting the instances of the range and domain of the predicates in binary constraints 
in which the variable appears. 



project involved the automatic seeding of large case memories by a generative 
planner. One domain used in this work was the "UM Translog" domain, 
a logistics planning domain developed for the evaluation and comparison 
of AI planning systems. Case-bases of various size were created, and each 
contains a number of plans, derivation information, and planning related 
ontologies.3 To measure the performance of the structure matcher we used 
the UM-Translog KB in different sizes (20 cases, 100 cases and 200 cases). 

The results, which we review briefly in this section, were interesting for 
two reasons. On the one hand, they showed that we could clearly scale 
our algorithms to extremely large knowledge bases (as far as we know the 
200 case CaPER case base, which contained over 1.6 million assertions, was 
the largest meaningful semantic network ever created at the time of these 
experiments.) More importantly, we showed that the reimplemented system 
had the capability to handle these large KBs on a single Sparc workstation 
as well as on the faster machines. 

As the CaPER planning system solved a problem, we stored all the queries 
that were generated. For testing the parallel system we chose several queries 
at random from a large number of stored queries. The results are summarized 
in Table 1. Table la presents the timings for six typical queries on a single 
processor SPARC 20 using the three different KBs. Table lb presents the 
timings on 1, 8 and 16 nodes of an SP2 using the 200 case KB (the largest 
of the three). The actual sizes of these KBs are shown in Table 2, where 
frames is the number of nodes in the DAG, structural links are those in the 
ISA ontology, and property links are all others (i.e. the number of the edges 
in the DAG is equal to the structural links plus the property links). 

As can be seen, the sequential timings range from under a second for 
the simplest query to about 7 seconds for the most complex. On the parallel 
system all queries were executed in under one second, with the simplest query 
taking only 29 milliseconds on 16 processors, and the most complex taking 
only 303 milliseconds. Table lb also shows the efficiencies of the parallel 
algorithm - the efficiency averaged about 69.3% for eight processors and 
59.9% for 16 processors. 

3A full description of the domain, the complete specification of the planning op- 
erators used, and the case-bases themselves are available on the World-Wide Web at 
http:/'/www. cs. umd. edu/projects/plus/UMT/. 



Query 20 CB 100 CB 200 CB 

1 1020 4740 6990 

2 195 1305 1635 

3 225 1470 1725 

4 630 3570 4590 

5 675 3600 4605 

6 405 585 645 

Query 1 8 16 1:8 1:16 

1 3041 546 313 69.6 60.7 

2 713 129 75 69.1 59.4 

3 753 135 79 70.0 56.6 

4 1997 361 205 69.1 60.9 

5 2003 360 206 69.5 60.8 

6 284 52 29 68.2 61.2 

a:       Timings    (milliseconds)    on    a    b:   Timings (milliseconds) on a 1, 8 
SPARC 20 for a 20, 100 and 200 cases    and 16 nodes of an SP2 on 200 case 

KB KB 

Table 1: UM-Translog Timings (serial and parallel). 

cases frames structural links property links 

20 

100 

200 

11612 

59915 

123173 

26412 

130558 

266176 

114359 

800481 

1620456 

Table 2: Sizes of the UM-Translog KBs. 



3    Integrating ForMAT and PARKA 
Based on the results reported above, it was clear that Parka, the inference engine 
that supports CaPER, could scale to the needs of ForMAT. In addition, based on 
our successes in the creation of the single processor version, we focused our effort 
on the design of a new version which would optimize single-processor performance 
using a database system to provide both efficiency and scalability. The resulting 
system, PARKA-DB was used in the actual support of ForMAT described below. 
(For convenience we drop the "DB" and refer to the system by the original name 
"PARKA" in the remainder of this report.) 

3.1 TPFDD Casebase. 
Initially, we encoded one of the ForMAT casebases into the PARKA knowledge 
representation system. MITRE provided the casebase of TPFDDs, and at UMCP 
a program was written to recode it into the database tables used by PARKA. The 
casebase contains 15 TPFDDs, consisting of a total of 319 FMs and about 14,000 
ULNs. The corresponding PARKA knowledge base consists of 54,580 frames, 
31,314 structural links, and 607,750 assertions. In addition, a domain-specific 
ontology was created containing approximately 1,200 frames for domain concepts 
such as "FM", "ULN", service branch, capabilities, functions, geographic locations, 
etc. Frames in the base ontology are organized in an abstraction ("is-a") hierarchy. 

The initial casebase was tested using a graphical interface front end to PARKA 
(see Figure 1). Through this testing we developed the base ontology and ensured 
that the PARKA casebase could handle the retrieval tasks required by ForMAT. 
Two addition features were added to PARKA to support ForMAT queries, string 
matching and variable restrictions. String matching provides the ability to search 
for values that contain a substring, such as searching for a description string that 
contains the substring "dog." Variable restrictions allow the user to restrict results 
to a set of values. In ForMAT it is used to restrict the search space of a query to 
a specific set of FMs instead of the entire casebase. 

3.2 How ForMAT uses PARKA. 
PARKA was designed as a knowledge base with a simple application program 
interface (API). Any program that conforms to the API can use the PARKA back- 
end. The PARKA browsing and quering tools are a graphical interface front-end 
accessing the PARKA back end using the same API. Code was added to ForMAT 
to allow it to access PARKA using the API. By conforming to the PARKA API, 
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Figure 1: An example of the PARKA front-end graphical representation of 
a ForMAT query. 

ForMAT can use any back-end version of PARKA, such as our recently developed 
distributed version or any of the parallel versions, transparently to the user. 

The ForMAT system from MITRE used a similar API to access its casebase 
retrieval system. To integrate ForMAT and PARKA, the ForMAT casebase code 
was removed and replaced by code to connect the two APIs. This code uses the 
ForMAT query specification to create the PARKA query. Because ForMAT is 
written in LISP and PARKA is in C, the LISP foreign function interface was used 
to communicate between the two languages. Only six PARKA API functions need 
to be called through the foreign function interface. 

When a ForMAT user wants to search the casebase, they build a query using the 
ForMAT FM Query interface. When the query is executed, the query is converted 



into a PARKA query which is passed through the PARKA API to the back-end 
where the retrieval is done. The results are passed back through the API to 
ForMAT where they are displayed to the user. 

ForMAT supports two types of retrieval, exact and general. An exact query 
searches for FMs with specific features, while a general query searches for FMs 
with similar but not necessarily exact features. An exact ForMAT query is very 
much like a PARKA query. The ForMAT interface allows the user to specify 
some FM and ULN features. These features are then converted into the binary 
predicates used in the PARKA casebase. The query shown in figure 2 searches 
for a force module with three features. The corresponding PARKA query includes 
those features as binary predicates plus a predicate that specifies the object with 
those features is a force module. 

BExact Hatch 
1   [General Hatch 

HWCOOM SECURITT-POLICEI 

GEUURAPHIC LUUAT1QN SRI-LM1K&| 

Insert   | 

Eelctc   | 

SERVICE AK!Y| 

M 

Ryn.is | 

lljpfdd    | 

!ta m 

PARKA Query: "(FUNCTION ?FM !SECURITY-POLICE-INST) 
(GEOGRAPHIC-LOCATION ?FM !SRI-LANKA-INST)(SERVICE ?FH !ARMY) 
(instanceOf ?FM !FORCE-MODULE)" 

Figure 2: An example of the ForMAT query window and a PARKA query. 

For general queries, PARKA needs to perform multiple queries, each more 
general than the previous one. For example, a query may look for FMs with a 
geographic-location in Saudi Arabia. An exact match would only return FMs with 
the exact value of Saudi Arabia. If no such FMs exist, none would be returned. A 
general match would perform a second query if no FMs were found. The second 
query would relax the constraints on geographic-location and search for any values 
under Middle East in the base ontology. This generalization continues until some 
results are found. Figure 3 shows a portion of the geographical hierarchy from 
PARKA. Figure 4 shows a general query as created in ForMAT's FM Query window 
and the PARKA queries generated by executing that query. 

ForMAT also allows users to specify queries that include OR and NOT, but 
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Asia 
— SE_Asia 

— Burma 
— Laos 

Southern_Asia 
— SriJLanka 
— India 

Eastern_Asia 
— Korea_South 
-Korea North 

Figure 3: Part of the graphical hierarchy in ForMAT 

Parka only does conjunctive queries. For disjunction, the query is converted into 
multiple queries and the results are combined. (A and (B or C)) becomes the two 
queries (A and B) and (A and C). NOT is handled by doing two queries, first the 
query is done without the predicates within the NOT. The results are saved and 
the query is done again to find the FMs to remove from the previous results. For 
example (A AND (NOT B)) would become A set-difference (A AND B). 

3.3    Comparisons 

We used a set of 379 queries to compare the two retrieval methods. The queries 
are actual ForMAT queries done by users during testing and military planning 
exercises (taken from history files). The queries were run 10 times each as exact 
queries and the times were averaged. Both methods returned the same FMs for 
all queries. 

The timing results are graphed in Figure 5. The speeds of the two methods 
are roughly the same, with Parka having some advantage on larger queries. On 
average, across the 379 cases, the PARKA results are 10ms faster than the original 
ForMAT algorithm. Most of the queries take less than 100ms using either retrieval 
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PARKfl Queru: "(GEOGRflPHIC-LOCATIDN ?FH TGsnVarl) (ereruInstancaOf ?GenVarl ISE-RSIA) 
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PARKA Query: "(GEOGRAPHIC-LOCATION ?FH TGenVarlHeverylnstanceOf TGenVarl !ASIA) 
(SERVICE TfH INRVY) (Instance« 1FH ! FORCE-HODULE)" 

Figure 4: An example of multiple PARKA queries generated from a general 
query. 

method. These are queries that only search FMs. The slower queries are ones that 
also search for a ULN feature. ForMAT's algorithm is based on a linear search 
algorithm that searches all the ULNs that belong to the FMs returned by th FM 
part of the query. Depending on the query, a large number of ULNs (up to 14,000) 
could be searched. The more FMs returned by the query, the better the PARKA 
algorithm does in comparison to ForMAT search of all the ULNs. 

One problem with these results is that the queries were very varied, and were 
collected across many uses of ForMAT. However, the Parka algorithms were devel- 
oped so that memory caching would provide a significant improvement on queries 
which were related to each other as was expected would happen in a typical For- 
MAT use. Therefore, for a more concise comparison, we needed a set of spe- 
cific queries representing a "typical" use of ForMAT. MITRE provided a set of 
queries for this purpose. In particular, as part of the Joint Warfare Interoperabil- 
ity Demonstrations (JWID), ForMAT was integrated with the TARGET system. 
One set of queries in this experiment had been particularly time-consuming for 
ForMAT. Generating a query report for TARGET required 17 different searches 
of the casebase with a wide range of queries including both FM and ULN queries. 

The results showed that the FMs returned by the two systems were the same, 
but PARKA was significantly faster than ForMAT. Figure 6 shows the results of 
this test. The total time of the TARGET query is 73.9 seconds for ForMAT and 
8.1 seconds for PARKA. Thus, we see that for this query set Parka is about 9 times 
as fast as ForMAT alone. (In experiments ongoing at the time of this publication, 
we have ported the new version of Parka to the SP2 and done some optimizations 
for the TPFDD data.  Current results show the parallel version of the TARGET 
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Figure 5:   Graph of ForMAT and PARKA query times sorted by PARKA 
times. 

set running on an IBM SP2 over 100 times as fast as the original ForMAT.) 
We are able to demonstrate from this experiment that PARKA does much 

better at casebase queries that include ULN features. This is because including 
the ULNs increases the search space from 319 FM structures to 319 FM plus 14,000 
ULN structures. This shows that the PARKA algorithm will do better than the 
ForMAT algorithm as the size of the casebase grows. 

Although ForMAT and PARKA are fully integrated, there is still room for 
improvement. Currently, PARKA only returns the names of the FMs that were 
retrieved from the casebase. The LISP structures corresponding to these names are 
then retrieved from a hash table of FMs. The time it takes to do this is included in 
the PARKA timing results. A closer integration which allowed ForMAT to use the 
data stored within the casebase would eliminate the need for the separate LISP 
structures and improve the overall system performance. 
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Figure 6:   Graph of ForMAT and PARKA query times for the parts of a 
TARGET query. 

4    Continuing Work 

The integration of ForMAT and Parka is continuing as part of a Phase III ARPI 
project. One significant improvement made recently is that an integration of the 
Parka system and another UM system was exploited to allow ForMAT to be- 
come significantly more interoperable with external data sources. In particular, 
ForMAT users may find additional information such as aircraft and vehicle specifi- 
cations, airport capacity, maps, or weather information helpful when creating new 
TPFDDs. The HERMES system[10] was developed at the University of Mary- 
land by VS Subrahmanian to provide for the semantic integration of different and 
possibly heterogeneous information sources. We have added an interface to the 
HERMES server to the ForMAT tool. Through a hierarchical menu the user has 
access to a number of online factbooks, maps, and weather information. HERMES 
returns a list of information sources that can be viewed in Netscape or a graphics 
viewer. Figure 7 shows the integrated ForMAT/Parka/Hermes system in use for 
a Bosnia scenario developed as part of the Phase III case-based planning cluster. 

Currently, we are looking at implementing a new system which will be a suc- 
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Figure 7: The working prototype combines ForMAT's interface, Parka's in- 
ference engine and Hermes access to web pages and graphics to provide a 
unified system for case-based transportation planning. 

cessor to ForMAT written to more completely exploit Parka's capabilities as well 
as to greatly extend the coverage of the ForMAT. We currently plan that this 
system will be jointly implemented by BBN and the University of Maryland with 
the goal of transitioning the resulting system into military use. 

5     Conclusion 

We believe that the joint ForMAT/Parka system was one of the successful demon- 
strations that the technology base for Arpa provides approaches that can be ex- 
ploited by the military. The new version of ForMAT, via the integration of Parka, 
is more capable, faster, and more usable than the earlier version. The Univer- 
sity of Maryland team profited by use of real data and a specific knowledge base 
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to focus our optimization efforts on. The ForMAT system gained by use of this 
new technology. Final experiments proved that the system had gained a signifi- 
cant speedup (in the experiment with the Target query the integrated system was 
nearly 10 times as fast as the unaugmented ForMAT system, more than 100 times 
as fast in parallel). In addition, this effort is now continuing, with a joint tool un- 
der development that is expected to surpass the original in speed, size and, most 
importantly, functionality. 
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